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Abstract— Perfectly matched layers (PML’s), which are em-

ployed for meslh truncation in the finite-difference time-domain

(FDTD) or in finite element methods (FEM’s), can be realized by

artificial anisotropic materials with properly chosen permittivity

and permeability tensors. The tensor constitutive parameters

must satisfy thle Kramers-Kronig relationships, so that the law

of causality holds. These relations are used to relate the real and
imaginary parts of the constitutive parameters of the PML media
to deduce the nsyrnptotic behaviors of these parameters at low

and high frequencies.

I. INTRODUCTION

T HEPERFECTLY matched layer (PML) concept, in-

troduced by Berenger [1], is an efficient method for

truncating the unbounded spatial domain in electromagnetic

radiation and scattering problems. Although the PML approach

was originally introduced in the context of the finite-difference

time-domain (FDTD) method [1], it has been found useful [2]

in mesh truncation in the finite element method (FEM) as

well. It has recently been verified that artificial anisotropic

media, with properly designed permittivity and permeability

tensors, can absorb electromagnetic waves irrespective of their

frequency and angle of incidence [3]. This idea has been

generalized for designing conformal PML’s, which provides

an efficient FIEM mesh truncation, especially for problems

involving electrically large antennas and scatterers [4], [5].

In this letter, we report the results of an investigation of

the causality issues in PML’s and deduce their low- and

high-frequency asymptotic behaviors. Although the PML’s

are artificial anisotropic media introduced primarily for the

purpose of mesh truncation iu finite methods, it is necessary to

investigate the dispersion relations satisfied by the constitutive

parameters of this medium to ensure that they satisfy the

conditions of linearity, time-invariance, and causality. The

principal objective of this letter, therefore, is to discuss the

conditions that should be taken into account in designing the

permittivity and permeability tensors of the PML media.
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II. CONSTITUTIVE IWLATIONS IN PML MEDIA

In [3], it has been shown that PML’s can be realized

as anisotropic media that satisfies the following constitutive

relations:

5(W) = :( U)E(W) E(w) = ~(ti)fl(u) (1)

where w is the angular frequency and the permittivity and

permeability tensors, ~ (w) and ~ (w) are defined by

= (w) = &oIA](w) ~ (W) = PoIA](w). (2)

In (2), [A](w) is a 3 x 3 tensor, whose entries must be chosen

such that an incident electromagnetic wave is absorbed by the

PML half-space without any reflection, and the transmitted

wave in the PML is attenuated in the direction normal to the

free space-PML interface. In [3], a planar interface between

the free space and PML absorber has been investigated for

the cartesian coordinate system (z, y, z), where the z-variable

is normal to the interface. It has been shown that the tensor

[A] (w) must be of the form

[

a(u) o 0

[A](w) = O a(w) O 1 (3)

00 I/a(w)

where the complex parameter a(w) is defined as

a(w) = l–j<. (4)
WEO

For a curved interface between free space and the PML, a local
coordinate sYstem (~, q, v) can be defined at any point p on

the interface, such that the (~, q)-plane is tangent to the curved

surface at P and v is the normal direction along which the

wave transmitted should attenuate. To realize a PML medium,

[A](t,q,v) (u), which is the representation of [A](w) in the local

coordinate system, must still have the form [4]

[

a(w) o 0

[Al(c,v)(ti) = 0 a$) 0 1 (5)

o I/a(w)

where a(w) = 1 — .j ~. For this case, o is no longer

a constant, but is a nondecreasing function of u, such that
a(o) = O. The representation of [A](w) in the global (z, y, Z)
coordinate system, reads

~&)[A1’
[A](u) = a(u)[A]l + — (6)
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where [A] 1 and [A] z are tensors that are functions of the space

coordinates, but they are independent of w. The coefficients

a(ti) and I/a(w) determine the frequency dependence of

[A] (w). In FEM applications, the solutions are obtained at a

single frequency and, hence, the approach developed so far,

is totally valid. However, the variation of a(w) (and l/a(~))

over the entire spectrum [i.e., for w E (– cc, m)] cannot be

defined arbitrtily. As shown in the next section, the real and

imaginary parts of a(w) are not independent and they can be

determined from each other in a unique way.

III. CAUSALITY AND DISPERSION RELATIONS m PML MEDIA

Let us consider the constitutive relationship

~(w) = ~ (u) fi(w). This relationship can be interpreted

as one that relates the input and output of a linear, time-

invariant system, whose transfer function matrix is So[A](w).

The matrix [A] (w) (which is a diagonal matrix in a local

coordinate system), must satisfy [6]

1)

2)

[A]((.J) = [A]”(-w) (7)

where * denotes complex conjugation.

Re([A](w) – 1) = ~P
/“

~z ~ W2Im([A](z))dz (8)
o

and

/
Im([A](w)) = –~P m 1 Re([A](r) – I)ch

o .Z2 — W2
(9)

where I is the identity matrix and P denotes the Cauchy

principal value.

The condition (7) arises from the fact that+both ~(t~ and

D(t), which are inverse Fourier transforms of E(w) and D(u),

respectively, are real signals. Equations (8) and (9) are known

as Kramers-Kronig relations, and they must be satisfied if the

system is to be c~usal. Specifically, this means that ~(t)

depends only on 17(t’) if the time t’ precedes t. Another

important consequence of (8) and (9) is that the real and

imaginary parts of the tensor [A](w) are related to each other,

i.e., they are not independent. Since the frequency dependence

of [A](w) is determined by a(w) (and l/a(w)), the conditions

(7) and (8) must be satisfied by these functions.

Let a(w) = a. (u)+jai(w). Condition (7) implies that a,(w)

and a,(w) are even and odd functions of w, respectively. Thus,

for a(w), the Kramers-Kronig relations can be written as

(lo)

An important consequence of (11) is that if a.(w) = 1 for

w E [0, cm), then a;(w) must vanish for w e [0, m), which
is consistent with the fact that for a dispersionless medium

there can be no absorption. It can be seen from (10) and
(11) that there can be dispersion only if the medium has

some absorption. Hence, it is impossible to realize a causal

PML medium by choosing Re(a(w) ) as unity over the entire

frequency spectrum.

Let us now discuss how a(w) can be defined properly, such

that conditions (10) and (11) are satisfied. We postulate the

frequency dependence of a(w) to be

f(x, Y,~)
a(u) = 1 +

1 + jaw
(12)

where Q is a constant and f is a function of position such

that it reduces to zero at the free space–PML interface and

is a nondecreasing function in the direction normal to the

boundary. At an arbitrary fixed point (ZO, yO, ZO) within the

PML region, let ,f(xo, yo, Zo) = ~. Then, at that point, a(w)

can be written as

P’
a(u) = 1 +

l+ja!w”
(13)

It is straightforward to verify that a(w) satisfies (10) and (1 1),

owing to the special form of the w dependence [6]. Now, let

us consider the term 1/a(w), which can be written as

1 B
=1-(l+p)+jaw. (14)

a(w)

It is also possible to show that (14) satisfies the Kramers-

Kronig relations. Hence, the tensor [A](w), which is defined

in terms of a(w) and l/a(w), can be used to realize a causal

PML medium. Since [A](w) appears in the expressions of both

~ (w) and ~ (w), the electromagnetic wave propagation within

the PML obeys the law of causality if the expression of a(w)

is given by (12).

Finally, let us consider the low and high frequency limits

of a(w). Equation (12) can be rewritten as

1 + a2w2 + f(z, y, z) .aw,f(z, y, z)
a(w) =

1 + azwz ‘J l+azwz
(15)

1) Low-frequency limit: If aw <<1, (15) becomes

a(w) = l+ f(%y, z). (16)

2) High-frequency limit: If aw >>1, (15) becomes

(17)

It is interesting to note that a(u), given by (17), has been

used in PML applications in FEM or FDTD formulations.

Therefore, it is not surprising to find that there are difficulties

[7] associated with the performance of the PML chosen as
above as the frequency of operation becomes very low.

IV. CONCLUSION

The tensor constitutive parameters of a perfectly matched

anisotropic medium must satisfy certain conditions, such that

the linear, time-invariant dynamical system governed by the

constitutive relations is causal. This, in turn, introduces certain

restrictions on the material properties of the PML medium. It

is possible, however, to express the frequency dependence of

the parameters such that not only they satisfy the causality

condition, but also provide expressions for limiting cases of

low and high frequencies.
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