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Frequency Dépendence of the Constitutive
Parameters of Causal Perfectly Matched
Anisotropic Absorbers

Mustafa Kuzuoglu and Raj Mittra, Life Fellow, IEEE

Abstract— Perfectly matched layers (PML’s), which are em-
ployed for mesh truncation in the finite-difference time-domain
(FDTD) or in finite element methods (FEM’s), can be realized by
artificial anisotropic materials with properly chosen permittivity
and permeability tensors. The tensor constitutive parameters
must satisfy the Kramers-Kronig relationships, so that the law
of causality holds. These relations are used to relate the real and
imaginary parts of the constitutive parameters of the PML media
to deduce the asymptotic behaviors of these parameters at low
and high frequencies.

I. INTRODUCTION

HE PERFECTLY matched layer (PML) concept, in-
troduced by Berenger [1], is an efficient method for
truncating the unbounded spatial domain in electromagnetic
radiation and scattering problems. Although the PML approach
was originally introduced in the context of the finite-difference
time-domain (FDTD) method [1], it has been found useful [2]
in mesh truncation in the finite element method (FEM) as
well. It has recently been verified that artificial anisotropic
media, with properly designed permittivity and permeability
tensors, can absorb electromagnetic waves irrespective of their
frequency and angle of incidence [3]. This idea has been
generalized for designing conformal PML’s, which provides
an efficient FEM mesh truncation, especially for problems
involving electrically large antennas and scatterers [4], [5].
In this letter, we report the results of an investigation of
the causality issues in PML’s and deduce their low- and
high-frequency asymptotic behaviors. Although the PML’s
are artificial anisotropic media introduced primarily for the
purpose of mesh truncation in finite methods, it is necessary to
investigate the dispersion relations satisfied by the constitutive
parameters of this medium to ensure that they satisfy the
conditions of linearity, time-invariance, and causality. The
principal objective of this letter, therefore, is to discuss the
conditions that should be taken into account in designing the
permittivity and permeability tensors of the PML media.
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1I. CONSTITUTIVE RELATIONS IN PML MEDIA

In [3], it has been shown that PML’s can be realized
as anisotropic media that satisfies the following constitutive
relations:

D(w) =% (w)E(w) B(w) =h(w)H(w) M)
where w is the angular frequency and the permittivity and
permeability tensors, & (w) and p (w) are defined by

€ (w) = eo[Al(w)

(W) = po[A)(w). @
In (2), [A](w) is a 3 x 3 tensor, whose entries must be chosen
such that an incident electromagnetic wave is absorbed by the
PML half-space without any reflection, and the transmitted
wave in the PML is attenuated in the direction normal to the
free space-PML interface. In [3], a planar interface between
the free space and PML absorber has been investigated for
the cartesian coordinate system (z,y, z), where the z-variable
is normal to the interface. It has been shown that the tensor
[A](w) must be of the form

alw) 0 0
Alw)=1 0 alw) 0 3)
0 0 1/a(w)
where the complex parameter a(w) is defined as
a(w) =1 - j—. )
weqo

For a curved interface between free space and the PML, a local
coordinate system (&,7,r) can be defined at any point P on
the interface, such that the (¢, )-plane is tangent to the curved
surface at P and » is the normal direction along which the
wave transmitted should attenuate. To realize a PML medium,
[A}(e,n,v)(w), which is the representation of [A](w) in the local
coordinate system, must still have the form [4]

alw) O 0
Menmw) =] 0 aw) 0 )
0 0 1/a{w)

where a(w) = 1 — jgw(T';). For this case, ¢ is no longer
a constant, but is a nondecreasing function of v, such that
o(0) = 0. The representation of [A](w) in the global (z,y, 2)
coordinate system, reads

[Al(w) = a(@)[Als + @[Ab ©
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where [A]; and [A], are tensors that are functions of the space
coordinates, but they are independent of w. The coefficients
a(w) and 1/a(w) determine the frequency dependence of
[A](w). In FEM applications, the solutions are obtained at a
single frequency and, hence, the approach developed so far,
is totally valid. However, the variation of a(w) (and 1/a(w))
over the entire spectrum [i.e., for w € (—o0,00)] cannot be
defined arbitrarily. As shown in the next section, the real and
imaginary parts of a(w) are not independent and they can be
determined from each other in a unique way.

III. CAUSALITY AND DISPERSION RELATIONS IN PML MEDIA

Let us consider the constitutive relationship
D(w) = € (w)E(w). This relationship can be interpreted
as one that relates the input and output of a linear, time-
invariant system, whose transfer function matrix is eg[A](w).
The matrix [A](w) (which is a diagonal matrix in a local
coordinate system), must satisfy [6]

) [Al(w) = [A]*(-w) (7)
where * denotes complex ogonjugation.
2) Re([A](w) - I) = %P /0 P—%Im([A](x))dw )
and
2w e 1
(W) = —2P [ = Rel(Al@) ~ Do

©)
where I is the identity matrix and P denotes the Cauchy
principal value.

The condition (7) arises from the fact that both E (t) and
ﬁ(t), which are inverse Fourier transforms of E(w) and D(w),
respectively, are real signals. Equations (8) and (9) are known
as Kramers-Kronig relations, and they must be satisfied if the
system is to be causal. Specifically, this means that ﬁ(t)
depends only on E(t') if the time ¢’ precedes t. Another
important consequence of (8) and (9) is that the real and
imaginary parts of the tensor [A](w) are related to each other,
i.e., they are not independent. Since the frequency dependence
of [A](w) is determined by a(w) (and 1/a(w)), the conditions
(7) and (8) must be satisfied by these functions.

Let a(w) = a,(w)+ja;(w). Condition (7) implies that a,.(w)
and a,(w) are even and odd functions of w, respectively. Thus,
for a(w), the Kramers-Kronig relations can be written as

9 oo
0/7-((1.]) —1= ;P\/O' xz — wz

;W :_Z_w "oia,r(a:)—l X
i(w) P/O dz.

dx (10)

v 22 — w? aDn
An important consequence of (11) is that if a,.(w) = 1 for
w € [0,00), then a;(w) must vanish for w € [0, 00), which
is consistent with the fact that for a dispersionless medium
there can be no absorption. It can be seen from (10) and
(11) that there can be dispersion only if the medium has
some absorption. Hence, it is impossible to realize a causal
PML medium by choosing Re(a(w)) as unity over the entire
frequency spectrum.

Let us now discuss how a(w) can be defined properly, such
that conditions (10) and (11) are satisfied. We postulate the
frequency dependence of a{w) to be

f(m)y7 Z)

=1
o) + 14+ jaw

(12)
where « is a constant and f is a function of position such
that it reduces to zero at the free space—PML interface and
is a nondecreasing function in the direction normal to the
boundary. At an arbitrary fixed point (xg, yo,2o) Within the
PML region, let f(zo,%0,20) = 5. Then, at that point, a(w)
can be written as

a(w)=14+—L (13)

- 14+ jow’
It is straightforward to verify that a(w) satisfies (10) and (11),
owing to the special form of the w dependence [6]. Now, let
us consider the term 1/a(w), which can be written as

1 B
mq—-—— (14)

(1+08)+ jow’
It is also possible to show that (14) satisfies the Kramers-
Kronig relations. Hence, the tensor [A](w), which is defined
in terms of a(w) and 1/a(w), can be used to realize a causal
PML medium. Since [A](w) appears in the expressions of both
€ (w) and g (w), the electromagnetic wave propagation within
the PML obeys the law of causality if the expression of a(w)
is given by (12).

Finally, let us consider the low and high frequency limits
of a(w). Equation (12) can be rewritten as

1+a2w2+f(a?,y7z) OéUJf(.’L',y,Z)

= — 15
a(w) 14 a2w? 1+ o?w? (15

1) Low-frequency limit: If aw < 1, (15) becomes
a(w) = 1+ f(z,y,2). (16)

2) High-frequency limit: If aw > 1, (15) becomes
a(w) ~1— PRGN 17)

ow

It is interesting to note that a(w), given by (17), has been
used in PML applications in FEM or FDTD formulations.
Therefore, it is not surprising to find that there are difficulties
[7] associated with the performance of the PML chosen as
above as the frequency of operation becomes very low.

IV. CONCLUSION

The tensor constitutive parameters of a perfectly matched
anisotropic medium must satisfy certain conditions, such that
the linear, time-invariant dynamical system governed by the
constitutive relations is causal. This, in turn, introduces certain
restrictions on the material properties of the PML medium. It
is possible, however, to express the frequency dependence of
the parameters such that not only they satisfy the causality
condition, but also provide expressions for limiting cases of
low and high frequencies.
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